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TRANSIENT RESPONSE OF TWO FLUID-COUPLED CYLINDRICAL ELASTIC
SHELLS TO AN INCIDENT PRESSURE PULSE

INTRODUCTION

In order to gain physical insight in the response as well as to

provide a data base for the deve].opment of general numerical methods for

predicting the underwater explosion response of fluid coupled shell

systems such as the double hull section of a submarine, the transient

response of systems of fluid coupled elastic shells of simple con-

figurations to the excitations of incident pressure pulse are being

analytically investigated. The case of two concentric spherical

elastic shells lends itself to the classical treatment of the

separation—of—variable and integral transform techniques and accurate

solutions have been obtained by a successive integration scheme (1].

It was found that a thin outer shell tends to be transparent to the

incident pulse .

In the present report , a solution method and results for the case

of two concentric cylindrical elastic shells of infinite length are

presented. This is also one of the cases in which it is possible to

apply the separation—of—variable and Laplace transform techniques to

simultaneously solve the wave equations governing the wave motions in

the fluids and the eauationa of motion of the elastic shells. The

corresponding problem for a single cylindr ical shell has been widely

studied and the results have been reviewed and summarized in many

ar ticles, e.g.,  references (2 ,3 ].  Here , it was more convenient to

obtain the inverse Laplace t ransform for the transient solution

indirectly using a integral equation method (4) or a differential—

Manuscript submItted June 30, 1978.
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integral equation method [5]. It is also possible to formulate the

present double—cylindrical—shell problem such that the same integral

equation method can be used to calculate the transient shell response.

Results are obtained for a system of two steel shells submerged

in water. Similar to the spherical case [1], it is also found that a

thin outer shell does not change significantly the basic response

feature of the inner shell and that its primary effects are to reduce

the axi—synmetric (breathing) and translational motions of the inner

shell . These lower mode effects  can be estimated by simple formulae.

DESCRIPTION OF THE PROBLEM

Figure 1 sketches the submerged fluid—coupled cylindrical shell

system and the incident plane pressure wave. The fluid surrounding the

outer shell and that between the two shells are considered to be ideal

compressible fluids in linear wave motions and can be characterized by

their unperturbed mass densities and sound speeds (~ e 
C
e

) and (p, c)

respectively. The shells are initially concentric. In this study,

the strength of the incident wave is sufficiently weak such that the

shell deflections are elastic and small and deviation from the con-

centricity remains negligible for the time duration of interest. The

middle surface radii, thickness , mass densities, Young ’s moduli and
e e e e epoisson s ratios of the outer and inner shells are (a , h , p 5 , E , v )

and (a ,h,p51 E,v ) ,  respectively. The z—coordinate of the cylindrical

coordinate system (r, 0, z) coincides with the axis of the shells in its

unperturbed position. The incident plane wave front is also parallel to

the z—axis and therefore all response entities do not vary with respect

to a.

2
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The deflections of the inner shell in the r— and 0- direction,

normalized with respect to the outer shell radius a
e
, are denoted by w

and v respectively and those of the outer shell by ~e and ye respectively.

The deflections in the z—direction do not enter into the present two—

dimensional system of equations of motion. The total pressure field

exterior to the outer shell is denoted by p
e(r 0, t) and that between

the shells by p (r , 0, t) where t designates time . The following

dimensionless parameters are also used in the mathematical formulation:

R — r/a
e
, T — cet/ae , ~ — a/ae, Ti — C

r U~~
e e e .e e e  e e

Cr C ~~ ‘~r 
p/p , M p a/ ( p h) ,  M p a / (p5h ),

— P,IP
e(Ce)2 , Pe..IP

e
,[P

e(Ce)2] I—~~- (h/a)2, 1
e.,..L (he/ae)2,

c2— E/ [ p
8
(l_v 2)(ce)2) ,  ~~ — Ee/~P

e [l~ (Ve)2](Ce)2~

e e 2 e 2

~o ~o ~~ — 0, +0 C , +0 
— C

e

— n~ C2(l+I), — fl2 C~ (l+I~) 
(1)

— C2( l+n2)(l+n21), — I C1’ n2 (1—ni)

= C~ (l.fn
2)(1+n2Ie) , 1~

e 
— 1e~

l. n2(l—n 2) 
‘

n — 1, 2, 3,

and P satisfy the wave equations

a2pe
v2Pe — — (2)

3 T2

and

V2P — c 2
r a ’ r2 (3)

3
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respectively , where V2 is the Laplacian operator. The boundary

conditions of the problem are that ~
e satisfies the radiation condition

at far field and that

3pe 32we
— = — = — at R l  (4)

3T~

and

— = — p  — at R = ~~ . (5)
3R r 3T2

All quantities except the incident press~ field have quiescent

initial conditions.

A Laplace transform pair is defined as

(0,s) =
_

~~

. 

w (0,T) e~
8T 

~~
(6)

y +ie.
w (0,T) —J (O ,s) e5Tds

where y lies to the right of all singularities of w in the complex s—

1/2plane and i = (—1)

Due to the circular geomtry of the problem, the solutions can be

expanded in Fourier series as the following:

P(R ,0 ,T) = E P (R ,T)cos n 0
n=0 ~

Pe(R O T) = E ~e (R ,T)cos n 0

w (e ,T) — E V
n

(T)COS n e (7)
n—O

v (0,T) = E v~ (T)sin n 0
n—i

wC (G , T) E e (T)cos a 0
n 0  ~

4
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V° (e ,T) — E y~ (T) sin n 8
n l

This type of expansion is not suitable for the pressures and shell

accelerations at early t ime [3 ,4]. Otherwise, it greatly facilitates

the calculation of the responses of the shells.

For the solution scheme to be used here, any linear elastic theory

of the cylindrical shell is applicable. in order to juxtapose solutions

to those for a single shell previously obtained in Ref. [4], the version

of shell equations of motion used therein is also used here. In the

Laplace transform domain, they are

— 
—M1 (C2s + a)~~ ~~(c,

s)
w — 

~~I+ 51’ + +~~~252 + 1

(8)

— 

-.M
~(8~ + cz) I~ (l ,s) —

n n

n — 0, 1, 2,

and

(~
2s2+ u )  

~n 
— —n c2 (l+n21) ‘1n

(9)

(~2 + ci
C) ~ — n C2 (1.,1121e) en n e n

a — 1, 2, 3,

The total pressure field exterior to the outer shell consists of

the pressure due to the inciden t wave and those due to scattering and

radiation by the outer shell. An arbitrary incident plane pressure

wave impinging the outer shell at ( 0 0 , R’l) at T—O can be expressed

5 ~t ~~~
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by the following series [4].

(R ,8 ,s) a f(s)e 5
~~0 

tn m
n

(81
~~

t0 8  n 6 (10)

where

f(s) is the Laplace transform of the temporal characteristics of the

incident wave, I (sR) is the modified Bessel function of tht~ first kind

and

£ = 1 for n = 0
n

(11)
= 2 for a > 0 -

SOLUTION S IN THE LAPLACE TRANSFORM DOMAIN

It can be readily shown that the solutions to the system of Eqs.

(2) through (11) are :

~~
° (R ,s) = f (s) e~~c (sR) - 

Is
(s) K~(sR) 

] 
- K (sR) 

(12)
n a K (s) K (s) ‘~

a n

P (R ,s) — 
ii 
K
~
(C
~.
CS) — s K(c s) 

(
‘2..~..\ 

I (C 8R)
a A (s) ~~ e ej

-e
ow I (c a) — ow I (c çs)

+ 
n n r n n r 

(~~ c
e 

K ( C s  R) (13)

— Me(S2.f.~~) [(~1’s1’++~~
2s2+ii~ ) A~(O)(P

eCe)/(PC)

— M~a (C 2s2+a )B (s)] 
~ 
(s) 

n (14)

and
—8f(s)e  £

w — ~~~~2s2~.a )(s2+~~ ) c A (s) 
(15)

• 6

.I.~
.. 

~~~~~

—

~~~~

-

~
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where K (s) is the modified Bessel function of the second kind, the

prime denotes differentiation of the Bessel functions with respect to

their arguments,

An
(8)_8(s1’++nt~

2s2+1~n
) [K

n
(s)(s 1’++:s2+~J:)_sKn

(8)Me(s2+a:)]An(s)(p
e
ce)/(pc)

.s2K ( s) (14e ( 2.f~e) 1’51’
~~ n C 2 52

~~~n ~~~ ~~~~~~~~~ 
(s1’++es2+pe)B (s) ]

4f4~f
e
C 3(~2 2 4U)( 24~,

e)[K (S)B ()4~((,)L ( ) ( ) / ( e e
)l (16)

An(8)~
I
n

(c
r
t
~
s)K

n
(c
r
s)_I

n
(cr5)K;

(c
r~
s) (17)

Bn(8)~
In(crcB)K~

(cr
s)_I

n(cr
s)Kn

(crc8) (18)

G (s).’I (c s)K (c Cs)—I (c Ca)K (c s) (19)

and

Ln
(8)

~
In(Cr

8)K
n

(c
r
C8)_I

n
(c
rCs)K

n
(c
r
s) . (20)

v and can be found from Eq. (9). Strains and stresses of the

shells can be computed using appropriate strain—deflection and stress—

strain relationships.

With use of the Tauber’s theorem of Laplace transform [16], some

of the asymptotic behaviors of the shell responses at late time can

readily be revealed from Eqs. (14) and (15). Specifically, for the

case where the incident wave P~ is a unit step wave, i.e., f(s) — u s ,

_Me[C2C2(1_~2)+2P ç2M] 2r r

T- ’~ 
c~C

2C~
(l_

~
2)+2p

r
MeC2+2prC

2MC~

7
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~MMe (22)
rw (T) —

T 
C C C ( l c )÷2P M

aC +2p~~~~MC

_4Me[(l.~c2)+O.5p M(l+~
2)]

we(T) = 
r (23)

1 2(l_c2) ( 2+Me)+2p (1+~
2)(M+Ma)+p ~Q~

e [ l+C 2i.C (1_~
2) ]

T — o’ r r r

and

—4 p MMa (24)
w
1

(T) = r
T •~~ 2(1—~

2) (2~I~M
e)+2P (l+ç2) (~f ~~).,.P ?Qfe[l+~24~~Cl...~2)

where the dot denotes differentiation with respect to T.

Eqs. (21) and (22) give the late time shell deflections long after

the incident wave has engulfed the outer shell and they can also be

obtained by static analyses. Eqs. (23) and (24) are expressions for the

late time translational velocities of the shells in the direction of

propagation of the incident wave. It can be shown that the only

condition under which w
1
(~ ) = w~ (co) is PrM=2~ 

i.e., when the inner

shell is neutrally buoyant in the interior fluid . Otherwise, the

ratio between them depends only on the buoyancy of the inner shell and

the radius ratio ç. In Fig. 2, it can be seen that a positively

buoyant inner shell (Pr
M > 2) translates faster and a negatively

buoyant one (Pr
M < 2) translates slower than the outer shell at late

time.

Formulae (21) through (24) can be used to facilitate parametric

studies of the effects of various shell and fluid properties on the

axisymmetric and translational responses of the shells. They also

provide asymptotic checks for the nuniberical calculations.

8
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THE INVERSION OF THE TRANSFORMED SOLUTIONS

The transformed solutions in Eqs. (12) through (15) are highly

complicated functions of a. To find their inverse transforms, it is

more convenient to rearrange them such that the solutions in the time

domain can be obtained by numerically solving a Volterra type of

integral equation the kernel of which can be accurately calculated.

This procedure has been demonstrated to be quite effective in previous

studies of the single cylindrical shell problem [4,5].

To proceed, Eq. (15) is rearranged to assume the foliowing

form :

— — Ma8(82+c:) K (S) 
pc 

M~s(c
2s2+o~) B (s)

W
n

(5) - w
n

(s) 
(s1’++es2.Ilje)K (s) 

1

+ I pc \ ~~~~~~~~~~~ Ba(s) 
+‘ 

pc \ 
MCs(82+un) G

n
(S)

~ ~
e~e) (c 1’s1’+f ~2s2+1j ) As(s) (~p

ece) (S1’++e
62+P

e
) 

An (S)

— 
~~~~~~ Mr s ( C 2s2+ct ) M~S(S2+U

e) La(s)

~ 
ee) 

~~~~~~~~~~~~ 
(51’44:52,..,~e) 

A (s)

P rMO~
2S2+an ) Ma(s2.

~~:) 1 ff ( s ) e °c 1 (25)
— 

(~ 1’s1’+ + c 2s24..~~) (Sk++e
S2+~~~) c~A~ (s) L~ 

K (s) ] -

The Nielsen ’s function ,

~ ~ 
1

W (l,T) — 
~~~~~~~ 

j I ~ + 1 I efl ds (26)
n 2w

) LK (5) Ja

has been accurately computed and tabulated by Nielsen [7] .  The

resultant of the incident and scattering transient pressure acting on

a rigid and motionless circular cylinder impinged upon by an incident

9
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plane wave,

rig 1 [y+
ico f(s)e 8c aT 

(27)
P (T)——i .. e ds
n 2iii i

j sK (s)n

has also been accurately computed with the aid of the Nielsen’s

function [4].

In the following inverse Laplace transform integrals,

1y+
i’o Mas S2+~

e) e5T
ds (28)

n 2wi I fl n

(T) — _.i_. [y
+jco 

MCs(12s2+a ) B (s) 
e8Tds (29)

a 2wi 

~~~ico 
(
s
ee) (~

l4sL+++
nc
2s2+un)

A
n

(s)

fy.fjøo , , Ma5(52+~°) G (a)
r C (T) — ~ (.Q~~~ 

n 
____ eSTcis 

(30)
n 2iti J ~~ e e)  (S 1’++e

52+P
e

) 
A (s)

d 1 
2 MCs(~

2a2+cs )  MaS(S2+~~) L (s) 
sT 

(31)
r (T) + — PC ____________ — —r--- e ds ,n 2lTi Jy ic o  ~~ee/ (~1’s4++~~2s2+p ) (sk++es2.f,~e)An~S)

and Y+ico

e 1 1 ~~~~~~~~~~~~ 
pj~(s24.cIe) e5T (32)

r (T) — — ds ,
n 2wi 

i—i” (~
1’s1’++C 2s2+~~) (S

k++eB24.~~) c2A (8)

the integrands are single—valued and analytic in the complex s—plane

since it can be shown that An(5)~ 
B (s) , Ge(s) and LntB) defined in

Eqs. (17) through (20) are single—valued and analytic . Their poles are

determined by the zeros of A~ (e) and the 4th order polynomials from the

shell equations of motion. By the relationshi ps between the Bessel

10
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functions J and Y and the modif ied Bessel functions I and K ,n n a n

~ 
A ( ±is) — J (c~~s)Y (c s) — J ( c

~
s)Y (c

~~
s) (33)

where the cross product frequently occurs in applied problems

involving an annular region and therefore its zeros have been studied

and calculated by many authors. Ref-. [8] is one of the many

publications presenting tabulated tables. The zeros of this cross

product are infinite in number and are all real and simple , hence

An(s) has infinite number of conjugated pairs of imaginary zeros.

The integrals in Eqs. (28) through (32) can now be accurately

evaluated by the customary method of residues and they are sums of

sine of cosine functions of T. Thereupon, the inverse Laplace trans-

form of Eq. (25) is a Volterra integral equation of the second kind ,

f T
wn
(T)
—J Sn

(T_t)W
n(t)d~

t — F~(T) (34)

0

where

S (T) — A~(T) — 
~~(T) + r~

’(T) + rC (T) — (T), (35)

F~ (T) 

~~ 

re (T—r) P’~~ (T)dt , (36)

An
(T) — f ra (T—T) W~(l ,t)dt — r (T), (37)

0

and
fT

‘v~ (T) —J A~(T_t) r~ (t)dt . (38)

0

11
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F (T) and S (T) are continous and well behaved functions of T. The

numercial methods for solving Eq. (34) have been extensively studied

and well developed [9]. The solution for We(T) can be likewise

calculated and it is also evident form Eq. (9) that vn (T) and ve (T)

can be obtained by simple convolutions.

RESULTS AND DISCUSSIONS

The integrals in Eqs. (36) through (38) are evaluated numerically

by the trapexoidal rule. Eq. (34) is solved using a simple linear

multistep method in which the integral is also computed by the

trapezoidal rule. Results are obtained for a case in which both shells

are made of steel and both fluids are water. The material properties

and dimensions involved are such that

cr 
— 

~~ 
= 

~~~ c2 — c2 — 12.58121

Ma — 22.09450 M — 4.41890
0.00581 h/a — 0.02905

ri O.2

The incidence is a step wave with f(s) — 1/s. For all integrations, a

time step AT — 0.0125 is used.

In all subsequent figures, the present solutions are plotted in

dotted lines and juxtaposed to those previously obtained in Ref. [4]

and plotted in solid lines for the case wherein the outer shell is

absent.

Figur e 3 shows the results for the w0’s, w1
ts and w2

ts. It can

be seen that the numerical results for the w0’s and w
1

1s correctly

approach their asymptotic values as calculated by Eqs (22) and (24)

12



respectively. At early time, the presence of the outer shell seems

to have little effect.

Physically , the motion of the outer shell starts at T — 0 while

that of the inner shell at T — — 0.2. This is also evident from the

mathematical properties of Eqs. (17), (32) and (36). Their large time

translational velocities from Eqs. (23) and (24) are respectively

— —1.17516 and w1(°°) — —1.30361. If the magnitude of the

incident pressure is such that P~ .~~~(C
e)2J — 1 x l0~~, it can be

estimated that at T—lO the relative displacement between the axes of

the two shells is still one order of magnitude smaller than the

thickness of the inner shell. Therefore, for such an instance, the

deviation from concentricity of the outer and inner shells would be

undoubtedly negligible.

The present w2 differs slightly from that of the single shell

case and the presence of the outer shell seems to have reduced the

rate of decreasing of w2 at large time from its peak value.

The w ’s f or higher n’s are plotted in Figures 4 and 5. For

0 < T 4  2, the present w3 through w7 are almost the same as those for

the case wherein the outer shell is absent. Similar to the single—

shell case , these wa ’s have markedly different oscillatory characteristics

for T > 2 and their oscillation amplitudes are decreased and the

periods increased by the presence of the outer shell. Since the

magnitudes of these we ’s are much smaller than those of the lower n

terms to begin with , the differences caused by the outer shell would

be quite insignicant for the calculation of w(0,T). It can also be

observed from Figures 3 , 4 and 5 that w~ converge s quite fast and it

13
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would suffice to use only eight terms in the series of Eq. (7) to

calculate the transient displacements, velocities and strains of the

shells for all values of 8 and T. To calculate the early time

acceleration and pressure , it is a customary practice to transform

Eq. (7) by Poisson’s summation formula into an integral which is then

asymptotically evaluated for large a and therefore small T by the saddle

point method. This has been elegantly carried out for the single—shell

case in Ref. [10]. The application of this procedure to the double—

shell case is rather complicated and is outside the scope of the present

report.

Figure 6 shows the time histories of the radial velocities at

various locations of the inner shell. The presence of the outer shell

causes little change of the early time values and the profiles of

w(8,T).  Other than 0 — w/ 2 , the values of w(8,T) at later time are re-

duced primarily due to the reduction of the term previously shown in

Figure 3.

The hoop stress resultant N0 (O ,T)(force per unit length)at the

middle surface of the inner shell is calculated by

N0 (8 ,T) — (w + -~~) (40)
1—v2

and its time histories at B — 0 , it/2 and ¶ are plotted in Figure 7.

Again , the shielding of the outer shell has little effect on the

stresses at very early time and does not change the profiles of the

stress time histories . At later time , the stresses are reduced due to

the reduction of the w0 term . The present results also clearly

demos t rates the genera t ion of circumferen tial stress waves at the inner
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shell as can be observed from the repeated appear anc e of peaks in the

stress time histories at appropriate time intervals . These stress

waves have the same features as those of the single—shell case dis-

cussed in Reference [3,4]. They encircle the cylinder with the

dilatational wave speed in both directions. Since the attenuation due

to radiation is small, many circus—navigation may be observed.

Similar to the double—spherical—shell case [1], it could also

be summarized here that the primary effects of a thin outer shell are

to reduce the breathing and translational motions of the inner shell

and these could be simply calculated from Eqs . (22) and (24) .
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